Engineering the Salmonella type III secretion system to export spider silk monomers
نویسندگان
چکیده
The type III secretion system (T3SS) exports proteins from the cytoplasm, through both the inner and outer membranes, to the external environment. Here, a system is constructed to harness the T3SS encoded within Salmonella Pathogeneity Island 1 to export proteins of biotechnological interest. The system is composed of an operon containing the target protein fused to an N-terminal secretion tag and its cognate chaperone. Transcription is controlled by a genetic circuit that only turns on when the cell is actively secreting protein. The system is refined using a small human protein (DH domain) and demonstrated by exporting three silk monomers (ADF-1, -2, and -3), representative of different types of spider silk. Synthetic genes encoding silk monomers were designed to enhance genetic stability and codon usage, constructed by automated DNA synthesis, and cloned into the secretion control system. Secretion rates up to 1.8 mg l(-1) h(-1) are demonstrated with up to 14% of expressed protein secreted. This work introduces new parts to control protein secretion in Gram-negative bacteria, which will be broadly applicable to problems in biotechnology.
منابع مشابه
Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion
BACKGROUND The type III secretion system (T3SS) is a molecular machine in gram negative bacteria that exports proteins through both membranes to the extracellular environment. It has been previously demonstrated that the T3SS encoded in Salmonella Pathogenicity Island 1 (SPI-1) can be harnessed to export recombinant proteins. Here, we demonstrate the secretion of a variety of unfolded spider si...
متن کاملATPase-Independent Type-III Protein Secretion in Salmonella enterica
Type-III protein secretion systems are utilized by gram-negative pathogens to secrete building blocks of the bacterial flagellum, virulence effectors from the cytoplasm into host cells, and structural subunits of the needle complex. The flagellar type-III secretion apparatus utilizes both the energy of the proton motive force and ATP hydrolysis to energize substrate unfolding and translocation....
متن کاملWeak Interactions between Salmonella enterica FlhB and Other Flagellar Export Apparatus Proteins Govern Type III Secretion Dynamics
The bacterial flagellum contains its own type III secretion apparatus that coordinates protein export with assembly at the distal end. While many interactions among export apparatus proteins have been reported, few have been examined with respect to the differential affinities and dynamic relationships that must govern the mechanism of export. FlhB, an integral membrane protein, plays critical ...
متن کاملThe invasion-associated type-III protein secretion system in Salmonella--a review.
The genetic determinants that confer upon Salmonella the ability to enter non-phagocytic cells are largely encoded in a pathogenicity island located at centisome 63 of the bacterial chromosome. Molecular genetic analysis has revealed that this region encodes a specialized protein secretion system that mediates the export and/or translocation of putative signaling proteins into the host cell. Th...
متن کاملMolecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system.
Many bacterial pathogens of plants and animals have evolved a specialized protein-secretion system termed type III to deliver bacterial proteins into host cells. These proteins stimulate or interfere with host cellular functions for the pathogen's benefit. The Salmonella typhimurium pathogenicity island 1 encodes one of these systems that mediates this bacterium's ability to enter nonphagocytic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular Systems Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2009